
Exacerbations May Negatively Impact COPD Patients

Exacerbations are a significant clinical component of COPD, and as the disease progresses, exacerbations may become more frequent¹⁻³

Exacerbations are important events in the disease course of COPD for many reasons, including4:

- Negative effect on a patient's quality of life
- Physical, social, and emotional impairments
- Effects on symptoms and lung function
- Accelerated rate of decline in lung function
- Association with significant mortality, particularly in exacerbations that require hospitalizations

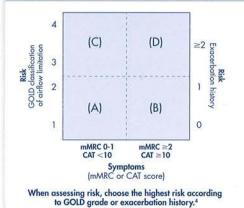
The Role of Exacerbations in Accelerating Lung Function Decline5,

Exacerbations, indicated by white arrows, punctuate and accelerate lung function decline.

* Figure represents the physiology of exacerbations by severity of airflow limitation in a hypothetical habitual smoker with COPD. The impact of COPD exacerbations on FEV, decline remains uncertain.

Figure reproduced with permission. Copyright © 2009 Lancet Publishing Group.5

Even when an exacerbation resolves, the effects may linger,4 and irreversible impairment may occur^{6,7}


- Higher exacerbation rates are associated with greater decline of FEV, and worsening of health status^{4,8}
- Patients with frequent exacerbations will continue to have exacerbations often³

Early detection and reducing the risk of exacerbations are vital to reducing the burden of COPD⁴

COPD=chronic obstructive pulmonary disease; FEV,=forced expiratory volume in the first second; GOLD=Global Initiative for Chronic Obstructive Lung Disease.

GOLD Guidelines Recommend Maintenance Therapy to Reduce COPD Exacerbation Risk

COPD Assessment Utilizes Reported Symptoms, Airflow Limitation, and Exacerbation History⁴

Patient Group	Characteristics	Spirometric Classification	Exacerbations per Year	mMRC	CAT
Α	Low risk, less symptoms	GOLD 1-2	≤l	0-1	<10
В	Low risk, more symptoms	GOLD 1-2	≤1	≥2	≥10
С	High risk, less symptoms	GOLD 3-4	≥2	0-1	<10
D	High risk, more symptoms	GOLD 3-4	≥2	≥2	≥10

Exacerbation risk can be reduced with appropriate pharmacotherapy^{3,4}

Initial Pharmacologic Management of COPD4,

Patient Group	First Choice	Second Choice	Alternative Choice†	
A Low risk, less symptoms	SA anticholinergic prn or SA B ₂ -agonist prn	LA anticholinergic or LA β_2 -agonist <i>or</i> SA β_2 -agonist + SA anticholinergic	Theophylline	
B Low risk, more symptoms	LA anticholinergic <i>or</i> LA B ₂ -agonist	LA anticholinergic and LA \upbeta_2 -agonist SA \upbeta_2 -agonist and/or SA anticholinergic Theophylline		
C High risk, less symptoms	ICS + LA β_2 -agonist or LA anticholinergic	LA anticholinergic and LA $\ensuremath{\beta_2}\xspace$ -agonist	PDE-4 inhibitor SA B ₂ -agonist <i>and/or</i> SA anticholinergic Theophylline	
D High risk, more symptoms	ISC+ LA B ₂ -agonist <i>or</i> LA anticholinergic	ICS and LA anticholinergic or ISC + LA B_2 -agonist and LA anticholinergic or ISC + LA B_2 -agonist and PDE-4 inhibitor or LA anticholinergic and LA B_2 -agonist or LA anticholinergic and PDE-4 inhibitor	Carbocysteine SA B ₂ -agonist <i>and/or</i> SA anticholinergic Theophylline	

^{*}Medications in each box are mentioned in alphabetical order and therefore not necessarily in order of preference; ¹Medications in this column can be used alone or in combination with other options in the first and second columns.

Tables reproduced with permission. Copyright © 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD).4

CAT=COPD Assessment Test"; ICS=inhaled corticosteroid; LA=long-acting; mMRC=modified Medical Research Council; PDE-4=phosphodiesterase-4; prn=when necessary; SA=short-acting.

References

1. Cooper CB. The connection between chronic obstructive pulmonary disease symptoms and hyperinflation and its impact on exercise and function, Am J Med. 2006;119[10 suppl 1]:21-31; 2. Decramer M, Rennard S, Troosters T, et al. COPD as a lung disease with systemic consequences—clinical impact, mechanisms, and potential for early intervention. COPD. 2008;5(4):235-256; 3. Hurst JR, Vestbo J, Anzueto A, et al; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363[12]:1128-1138; 4. Global Initiative for Chronic Obstructive Lung Disease [GOLD]. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease [GOLD report]]. http://www.goldcogd.org/uploads/users/files/GOLD_Report_2011_Feb21.pdf. Updated 2011. Accessed April 30, 2012; 5. Hansel TT, Barnes PJ. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet. 2009;374[9691]:744-755; 6. Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161[5]: 1608-1613; 7. Parker CM, Voduc N., Aaron SD, Webb KA, O'Donnell DE. Physiological changes during symptom recovery from moderate exacerbations of COPD. Eur Respir J. 2005;26(3):420-428; 8. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57[10]:847-852.

(07/12)